

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

NAVENVPREDRSCHFAC CONTRACTOR REPORT CR 82-10

FORECAST AIDS FOR PREDICTING TROPICAL CYCLONE ASSOCIATED GUSTS AND SUSTAINED WINDS FOR CUBI POINT, PHILIPPINES

Prepared By:

J. D. Jarrell and R. E. Englebretson
Science Applications, Inc.
Monterey, California 93940

Contract No. N00228-81-C-H361

AUGUST 1982

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED

E

82 11 45 029

Prepared For:

NAVAL ENVIRONMENTAL PREDICTION RESEARCH FACILITY MONTEREY, CALIFORNIA 93940

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION I	READ INSTRUCTIONS BEFORE COMPLETING FORM						
1. REPORT NUMBER NAVENVPREDRSCHFAC Contractor Report CR 82-10	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER					
4. TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED						
Forecast Aids for Predicting Tropic Associated Gusts and Sustained Wind	Final						
Cubi Point, Philippines	SAI PN 1-425-08-453						
7. AUTHOR(s)	6. CONTRACT OR GRANT NUMBER(#)						
J.D. Jarrell and R.E. Engle	N00228-81-C-H361						
9. PERFORMING ORGANIZATION NAME AND ADDRESS Science Applications, Inc. 2999 Monterey-Salinas Highway Monterey, CA 93940	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS PE 63207N PN 7W0513 TA CC00 NEPRF WU 6.3-14						
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command	12. REPORT DATE August 1982						
Department of the Navy Washington, DC 20361	13. NUMBER OF PAGES 18						
14. MONITORING AGENCY NAME & ADDRESS(II different	15. SECURITY CLASS. (of this report)						
Naval Environmental Prediction Rese Monterey, CA 93940	UNCLASSIFIED						
•	15a, DECLASSIFICATION/DOWNGRADING SCHEDULE						
16. DISTRIBUTION STATEMENT (of this Report)							

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Tropical cyclone Typhoon

20. ABSTRACT (Continue on reverse side it necessary and identify by block number)

Forecast aids are provided for predicting wind conditions at a station when a tropical cyclone passes within 360 n mi. The forecast aids were produced by analyzing a data set comprising the ratios of station wind values to tropical cyclone center wind values. Ratio values were then assigned to the position of the cyclone center. The 360 n mi radius circle about the station was divided into 71 equal area segments and the values of the mean and maximum ratio within each segment were subjectively analyzed to produce the forecast aids.

CONTENTS

1.	Introducti	on	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	Production	of	Fo	rec	ast	Ai	ds	•	•	•	•	•	•	•	•	•	•	ı
3.	Use of the	Fo	rec	ast	Ai	ds	•	•	•	•	•	•	•	•	•	•	•	4
Ref	erence .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
nia	- -																	٦.

Acces	sion For						
NTIS GRA&I							
DTIC TAB							
Unannounced 🔲							
Justification							
By							
Avail and/or							
Dist	Special						
A							

1. INTRODUCTION

Forecasting wind conditions at a station during the passage of a tropical cyclone is a critical problem for operational environmentalists. The Air Force has produced forecast aids for predicting mean and maximum peak gusts, for several western Pacific Air Force Bases (Pettett, 1980), for periods when a typhoon was within 360 n mi of a base. The need for similar forecast aids for Navy sites was recognized and the Naval Environmethal Prediction Research Facility (NEPRF), Monterey, California was requested to produce the aids. Science Applications, Inc., under contract to NEPRF has conducted the research and development involved in producing forecast aid reports for Yokosuka, Japan and Cubi Point, Phlippines.

2. PRODUCTION OF FORECAST AIDS

The forecast aids are based on a data period extending from the establishment of a U.S. Navy weather observation program at the stations of interest through 1979. This is a 27 year period for Yokosuka (1953-1979) and 25 years for Cubi Point (1955-1979). Best track data for the tropical cyclones were extracted from Joint Typhoon Warning Center (JTWC) records for the periods when a tropical cyclone was within 360 n mi of the station of interest. Aviation hourly observations at three-hour intervals, obtained from the Naitonal Climatic Center (NCC), Asheville, NC, were extracted for the periods identified as having a tropical cyclone within 360 n mi of the station. The best track

¹Aviation hourly observations are archived at NCC for the local times corresponding to 00,03,06,09,12,15,18,21 GMT only.

and weather observations were then merged into a new data base. From this data, ratios of storm center winds to station reported sustained winds were determined and assigned to the storm center position. The 360 n mi radius circle was divided into 7l equal areas (Fig.1).

The ratios identified with each area were summarized and maximum and mean gust ratios and standard deviations were determined. The number of ratios per area (sample size) and cumulative frequency distribution of the ratios were also computed. Computer plots of the gust ratios, sample size and area number values were generated. The gust ratio plots were then subjectively analyzed taking into consideration such factors as sample size for the mean gusts and cumulative distribution frequency for the maximum gusts.

The analyses of the data are presented as isolines which represent the climatological mean or maximum gust to be expected at the station as a percentage of the tropical cyclone center wind. The data base is separated into two classifications of cyclones, i.e., typhoons and lesser tropical cyclones. The classification is based on the cyclone center wind speed at the time of the station wind observation. A set of analyses is provided for each cyclone classification. In addition, a table containing all the data necessary to produce figures 1 through 5 is provided. The data in the table will assist local reanalysis if required.

Figure 1. A 360 n mi radius circle divided into 71 equal area (5734.5 n mi²) segments which can be centered on the station of interest. The circle is comprised of an inner circle and five surrounding rings. The radial thickness of each ring is approximately 60 n mi, but is not a constant. The segments are numbered from the inner circle and spiral outward.

3. USE OF THE FORECAST AIDS

The forecast aids can be utilized as follows:

1) Locate the actual or forecast tropical cyclone center position on the appropriate forecast aid analysis; 2) determine the maximum gust ratio value by interpolating between the contours; and 3) apply this ratio (percentage to the cyclone center wind value to obtain the maximum or mean gust values to be used as a forecast aid in making the wind forecast. For example, if a tropical cyclone has center winds of 100 kt and a ratio of .65 was determined above, then 65% of the center wind gives forecast gusts to 65 kt for the station.

Sustained one-minute maximum and average wind values can be found by applying a factor of 2/3 to the gust values. This factor is the inverse of the 1.5 to 1 ratio of gusts to sustained winds that was used in the Air Force reports and verified as follows. A study of the wind observations recorded at Cubi Point (1953-1979) and Yokosuka (1955-1979) was made as part of the development of the methodology used in producing these forecast aids. That data set included the NCC tape archived data, hand augmented with gust data. A uniform ratio of gust to sustained wind speed of 1.5:1 was found over various speed ranges and at both stations. data set included all station observations (Cubi Point 3449 and Yokosuka 2114) with sustained winds of 10 knots or more when a tropical cyclone was within 360 n mi of the station. This ratio was found to be reasonable for all tropical cyclone intensity classifications and station wind conditions.

Forecasters should recognize that all of the gust information is based on the archived sustained winds (aviation observations at three hour intervals from NCC) multiplied by 1.5. In determining this multiplier, local effects as they relate to various wind directions were only indirectly taken into account. That is, the ratios assigned to each area relate only to storms centered in that area. The storm center location relative to the station location strongly influences the station wind velocity. Therefore, some degree of local effects are inherent in the analyzed ratio patterns.

Table 1 summarizes the data used in producing the forecast aids. The data in Table 1 is sufficient to reproduce figures 1 through 5 should local reproduction or modifications be desired. The ratio values in Table 1 represent the relationship of station sustained winds to tropical cyclone center winds. To derive the forecast aids for gust values the 1.5 multiplier must be applied.

Figures 2 through 5 are the forecast aid analyses. The contours are labelled as percentages which were derived from the ratios of station winds to tropical cyclone center winds. Note that the center contours on all but figure 2 are less than 100 percent. For example, the maximum gust aid for typhoon strength tropical cyclones (Fig.4) shows only a 70 percent contour around the station. Table 1, segment 1 for tropical cyclones of 64 kt or greater shows 16 cases of typhoon strength centers being located within the area of segment 1. The maximum sustained wind to typhoon center wind ratio that occurred during the 16 cases is .494 to 1. Segment 3, located east of the station (Fig.1), shows

14 cases of typhoon strength centers with a maximum ratio of .521 to 1. Applying the 1.5 multiplier to the ratios of segments 1 and 3 results in the data that supports the 70 percent contour.

The interpretation of figure 4 is that Cubi Point has not experienced winds at the official observation point of as great an intensity as the official typhoon center winds during typhoon passages. While these findings are based on a reasonable sample size, caution should be used in applying these results when a typhoon center is expected to pass over or very near the station.

Inconsistent gust values will be obtained from the aids when a tropical cylone center wind change results in a change of cyclone classification and therefore a change of forecast aid. For example, use of figure 2 for a tropical storm forecast to pass over the station with 60 kt center winds would indicate a maximum gust of 72 kt. A change in center wind to 65 kt and the use of figure 4 indicates 46 kt maximum gusts. An intermediate value is the likely best guidance in such cases.

REFERENCE

Pettett, J.E., 1980: Prediction of Typhoon-Induced Peak
Winds at Four Pacific Stations. 1WW/TN-80/001.

Figure 2. Maximum Gust Ratios (labelled as percentage) for Cubi Point when a tropical cyclone of less than typhoon strength (<64 kt) is centered within 360 n mi of the station. Locate the typhoon center by latitude and longitude and interpolate the ratio (percentage) value. Multiply the typhoon center wind speed by this percentage to get the wind speed value of the maximum gust expected with the given center position and wind speed. Multiply the maximum gust speed by 0.67 to find the maximum one-minute average sustained wind speed.

Figure 3. Mean Gust Ratios (labelled as percentage) for Cubi Point when a tropical cyclone of less than typhoon strength (<64 kt) is centered within 360 n mi of the station. Locate the typhoon center by latitude and longitude and interpolate the ratio (percentage) value. Multiply the typhoon center wind speed by this percentage to get the wind speed value of the mean gust expected with the given center position and wind speed. Multiply the mean gust speed by 0.67 to find the mean one-minute average sustained wind speed.

Figure 4. Maximum Gust Ratios (labelled as percentage) for Cubi Point when a tropical cyclone of typhoon strength (≥64 kt) is centered within 360 n mi of the station. Locate the typhoon center by latitude and longitude and interpolate the ratio (percentage) value. Multiply the typhoon center wind speed by this percentage to get the wind speed value of the maximum gust expected with the given center position and wind speed. Multiply the maximum gust speed by 0.67 to find the maximum one-minute average sustained wind speed.

Figure 5. Mean Gust Ratios (labelled as percentage) for Cubi Point when a tropical cyclone of typhoon strength (\geq 64 kt) is centered within 360 n mi of the station. Locate the typhoon center by latitude and longitude and interpolate the ratio (percentage) value. Multiply the typhoon center wind speed by this percentage to get the wind speed value of the mean gust expected with the given center position and wind speed. Multiply the mean gust speed by 0.67 to find the mean one-minute average sustained wind speed.

Table 1. A listing of the data used in producing figures 1 through 5, and other general information. Table contents by column are: segment number, latitude and longitude of segment center, maximum ratio, mean ratio, standard deviation of ratios, number of ratios (sample size), and cumulative frequency distribution expressed as the percentage of ratios occurring between 0.0 and the maximum ratio or 1.0 in 0.1 increments.

```
Tropical cyclones less than 64 kts
 CENTER POINT
                                    CUM FREQ DIST+N
                                1
                 MAX MEAN S.DV.
SEG LAT LONG
                                     15 28 53 63 75 85 96 93 95 166
  1 14.8 126.3 1.045 .364 .249 40
  RING NUMBER 1
                                    CUM FREQ DIST+N
                 MAX MEAN S.DV.
                                N
SEG LAT LONG
                                     22 42 53 67 78 80 82 96 130
                .857 .338 .258 45
  2 16.0 121.0
                                     45 75 80 93 98 98 98 105
                .750 .184 .144
                                43
  3 14.8 121.8
                                     19 36 67 81 97 101
                                 30
                .532 .254 .141
  4 13.6 121.0
                                     2 33 69 95 98 98 98 100
                                42
  5 13.6 119.6
                .789 .257 .126
                                     17 55 81 91 92 98 98 109
                .800 .225 .147
                                 53
  6 14.8 118.8
                                      £ 23 48 67 75 90 96 9E 98 1JJ
               .914 .353 .212 48
  7 16.2 119.6
  RING NUMBER 2
                                     CUM FREQ DIST+N
                 MAX MEAN S.DV.
                                N.
SEG LAT LONG
                ·581 ·303 ·127
                                     7 22 48 78 93 123
                                 27
  8 17.1 121.1
                                     36 64 80 92 1JC
                .480 .195 .129
                                 25
  9 16.2 122.4
                                     44 76 38 109
                .360 .146 .095
                                 25
 10 14.8 122.8
                                     39 69 72 92 97 100
                .563 .182 .137
                                 36
 11 13.4 122.4
                                     24 67 91 95 95 100
                .600 .189 .12E
                                 21
 12 12.5 121.1
                                     8 65 90 96 130
                .500 .193 .292
                                 48
 13 12.5 119.5
                                     21 61 94 97 97 100
                                 33
                .550 .194 .098
 14 13.4 118.2
                .333 .184 .C68
                                 34
                                     12 68 94 100
 15 14.8 117.8
                                     24 63 71 93 93 180
               .560 .216 .139
                                41
 16 16.2 118.2
                                     12 17 40 74 86 93 103
               .675 .342 .163
                                 42
 17 17.1 119.5
  RING NUMBER 3
                                     CUM FREQ DIST+N
                 MAX MEAN S.DV.
                                  N
SEG LAT LONG
                                     10 35 67 83 88 96 92 96 109
                                 52
                .900 .301 .196
 18 18.2 121.1
                                     33 75 92 96 190
                .458 .162 .092
                                 24
 19 17.5 122.5
                                     33 58 89 97 138
                                 35
                .489 .184 .175
 20 16.3 123.5
                                     21 66 89 96 98 100
                .567 .196 .111
                                 47
 21 14.8 123.9
                                     42 92 100
                .300 .116 .06F
                                 24
 22 13.3 123.5
                                     25 55 75 85 85 95 95 95 95 133
                                 2]
 23 12.1 122.5 1.000 .266 .223
                                     22 70 87 100
                                 23
                .400 .185 .1.7
 24 11.4 121.1
                                     17 56 56 72 100
                .500 .270 .161
                                18
 25 11.4 119.5
                                     11 56 78 100
                                 9
                .385 .214 .100
 26 12.1 118.1
                                     13 67 93 93 93 93 93 93 100
                .900 .213 .187
                                33
 27 13.3 117.1
                                     25 61 86 96 130
                                50
                .433 .186 .141
 28 14.8 116.7
                                     27 59 82 100
                                22
               .385 .187 .166
 29 16.3 117.1
                                     7 40 64 84 96 98 130
               .640 .263 .139
                                45
 30 17.5 118.1
                                     19 44 63 81 87 93 100
                                54
 31 18.2 119.5 .667 .269 .174
```

```
RING NUMBER 4
                MAX MEAN S.DV. N CUM FREQ DIST+N
SEG LAT LONG
                .600 .234 .169 39
                                    26 51 74 87 87 100
 32 19.2 121.1
                .526 .181 .114
                               24
                                    17 75 83 96 96 10C
 33 18.7 122.6
                                    28 59 84 94 100
 34 17.7 123.8
               .467 .19J .109
                               32
                               45
 35 16.3 124.7
                                    47 87 89 93 98 100
                .560 .136 .113
 36 14.8 124.9
               .667 .151 .130
                                49
                                    41 82 94 96 96 96 180
                                    45 77 91 95 95 100
               .550 .142 .119
                                22
 37 13.3 124.7
                                23
                                    26 78 91 91 96 96 96 96 100
 38 11.9 123.8
               .833 .194 .163
               .476 .186 .130
                                    33 71 79 92 166
 39 10.9 122.6
                                24
               .483 .232 .134
                               19
                                    21 58 74 84 130
 48 10.4 121.1
               .333 .185 .091
                                    14 57 86 100
 41 10.4 119.5
                                7
                               13
                                    20 50 80 86 100
 42 10.9 118.0
               .486 .237 .134
                                    25 63 88 88 100
 43 11.9 116.8
               .480 .211 .127
                                B
                                    22 59 85 93 100
 44 13.3 115.9
               .450 .195 .108
                               27
               .467 .187 .107
                                    27 61 83 98 100
 45 14.8 115.7
                                41
                                    20 49 73 80 88 88 94 96 96 103
46 16.3 115.9 1.111 .271 .225
                                51
                                    27 55 84 98 98 100
               .524 .192 .107
 47 17.7 116.8
                                44
                               50
                                    22 60 76 94 96 98 98 100
48 18.7 118.6
                .720 .213 .143
49 19.2 119.5
               .658 .224 .155
                               45
                                    31 53 71 91 91 98 100
 RING NUMBER 5
                                    CUP FREQ CIST+N
SEG LAT LONG
                MAX MEAN S.DV.
                                N
                .500 .223 .135 16
                                    19 50 75 94 100
50 20.2 121.1
                                    43 57 64 86 100
51 19.8 122.7
               .500 .216 .165 14
                                    18 47 71 76 100
52 18.9 124.3
                .500 .256 .153
                                17
                                    34 69 88 97 97 97 97 100
                .800 .187 .143
                                32
53 17.8 125.1
               .500 .144 .184
                                    41 81 93 96 100
                                27
54 16.3 125.7
               .786 .215 .202
55 14.8 126.0
                                23
                                    35 70 87 87 87 91 91 100
               .417 .149 .680
                                    31 85 92 96 100
56 13.3 125.7
                                26
               .480 .231 .118
                                    18 59 82 88 100
57 11.8 125.1
                                17
                                    35 59 94 188
58 1C.7 124.G
               .342 .176 .092
                                17
               .320 .168 .077
                                    23 69 92 180
59
    9.8 122.7
                                13
                                    13 63 88 88 88 188
60
     9.4 121.1
               .560 .201 .148
                                8
               .560 .296 .145
                                    0 33 56 78 89 100
     9.4 119.5
                                9
61
    9.8 117.9
               .203 .146 .641
                                7
                                    29 86 130
62
                                    20 50 50 80 100
63 10.7 116.6
               .480 .249 .154
                                10
               .081 .081 .000
                                    166
64 11.8 115.5
                                1
               .350 .172 .683
                                    21 74 89 100
65 13.3 114.9
                                19
66 14.8 114.6
               .519 .164 .123
                               49
                                    23 78 86 94 98 180
               .600 .235 .161
                                35
                                    29 46 74 83 91 10ū
67 16.3 114.9
                                    36 67 76 79 91 94 94 100
68 17.8 115.5 .800 .223 .208
                               33
69 18.9 116.6 1.120 .253 .254
                                   26 61 80 85 87 89 91 93 93 100
                               46
70 19.8 117.9 .667 .232 .156 54 22 52 70 85 93 98 100
71 20.2 119.5 .438 .237 .125 16
                                   19 38 69 94 130
```

```
Tropical cyclones of 64 kt or greater
  CENTER POINT
SEG LAT LONG
               MAX MEAN S.DV. N
                                    CUM FREQ CIST+N
  1 14.8 126.3
                .494 .265 .146 16
                                    13 44 63 75 188
  RING NUMBER 1
SEG LAT LONG
                 MAX MEAN S.DV. N
                                    CUP FREQ DIST+N
                .448 .167 .123 19
                                    37 74 84 89 130
  2 16.0 121.0
                .521 .262 .131
                                14
                                    14 36 57 79 93 100
  3 14.8 121.8
                .308 .183 .074
                               9
                                    C 67 78 100
  4 13.6 121.0
  5 13.6 119.6
               .369 .243 .089
                                 8
                                    13 25 63 100
               .338 .200 .080
                                    20 53 87 100
  6 14.8 118.8
                                15
                                    6 30 50 100
               .353 .249 .693 1]
  7 16.0 119.6
  RING NUMBER 2
                 MAX MEAN S.DV. N
                                    CUM FREQ DIST+N
SEG LAT LONG
                .314 .149 .092 15
  8 17.1 121.1
                                    33 73 93 100
                                20
                                    30 90 100
                .261 .136 .060
  9 16.2 122.4
 10 14.8 122.8
                .267 .125 .669
                               28
                                    36 89 100
 11 13.4 122.4 .241 .138 .653
                                15
                                    27 93 100
               .194 .109 .050
                                13
                                    38 100
 12 12.5 121.1
 13 12.5 119.5
               .269 .123 .056
                                    54 92 130
                               13
 14 13.4 118.2
              .271 .143 .059
                                7
                                    14 86 100
 15 14.8 117.8 .200 .110 .059
                               14
                                    43 100
 16 16.2 118.2 .185 .102 .041
                               12
                                    42 103
                .400 .152 .110
                                    50 75 88 100
 17 17.1 119.5
                               16
 RING NUMBER 3
                 MAX MEAN S.DV. N
                                    CUM FREQ DIST+N
SEG LAT LONG
                                    23 69 96 100
 18 18.2 121.1
               .313 .156 .073 26
                                    44 85 95 100
               .330 .132 .071
 19 17.5 122.5
                                41
               .277 .120 .067
                                    42 81 100
                                26
 20 16.3 123.5
               .161 .067 .043
 21 14.8 123.9
                                41
                                    £0 100
 22 13.3 123.5
               .253 .103 .062
                               19
                                    53 89 100
 23 12.1 122.5 .192 .391 .054
                               13
                                    77 100
 24 11.4 121.1
              .076 .376 .000
                                    160
                                1
 25 11.4 119.5 .200 .142 .024
                                 9
                                    0 100
 26 12.1 118.1 .165 .391 .038
                                    67 100
                                 6
 27 13.3 117.1 .152 .109 .629
                                3
                                    50 100
              .165 .100 .055
                                4
                                    50 100
 28 14.8 116.7
              .242 .368 .057
                                    79 95 103
 29 16.3 117.1
                               19
               .359 .124 .082
                                    50 88 94 100
 36 17.5 118.1
                               16
 31 18.2 119.5 .301 .178 .086
                                25
                                    16 64 95 100
```

```
RING NUMBER 4
SEG LAT LONG
                  MAX MEAN S.OV.
                                  N
                                      CUP FREQ DIST+N
 32 19.2 121.1
                 .341 .148 .397
                                  27
                                      37 74 93 100
 33 18.7 122.6
                 .413 .116 .085
                                  31
                                      E3 80 97 97 100
                                  53
                                      72 96 103
 34 17.7 123.6
                 .275 .388 .856
                                      73 100
 35 16.3 124.7
                 .198 .175 .054
                                  41
                                      €9 100
 36 14.8 124.9
                 .169 .073 .042
                                  29
                                      £7 96 100
                                  23
 37 13.3 124.7
                 .210 .356 .048
                                      €7 100
                 .175 .384 .047
                                  15
 38 11.9 123.8
 39 10.9 122.6
                 .200 .177 .023
                                  2
                                      C 10C
                .154 .137 .017
                                  2
 40 10.4 121.1
                                      0 100
 41 10.4 119.5
                 .250 .173 .052
                                   3
                                       0 63 100
                 .157 .113 .J38
                                      45 100
 42 10.9 118.0
                                  11
                 .100 .076 .019
 43 11.9 116.8
                                  7
                                      100
 44 13.3 115.9
                 .185 .081 .054
                                  8
                                      €3 100
                 .253 .118 .067
                                  17
                                      47 82 103
 45 14.8 115.7
                 .435 .141 .121
                                  17
                                      47 76 88 88 100
 46 16.3 115.9
 47 17.7 116.8
                 .282 .192 .671
                                 18
                                      72 89 100
 46 16.7 118.0
                .373 .155 .574
                                      21 76 97 100
                                  34
                                 37
                                      16 51 89 100
 49 19.2 119.5
                .329 .180 .082
  RING NUMBER 5
                 MAX MEAN S.OV.
                                  N
                                      CUM FREQ DIST+N
SEG LAT LONG
                                 24
                                      25 67 100
50 20.2 121.1
                 .254 .153 .C71
51 19.8 122.7
                 .195 .398 .051
                                  33
                                      55 100
                .261 .399 .054
                                  18
                                      56 94 100
 52 18.9 124.0
 53 17.8 125.1
                 .215 .067 .054
                                  43
                                     75 98 100
                                 40
 54 16.3 125.7
                .198 .376 .048
                                      68 100
                                      54 100
                .120 .054 .028
                                  17
 55 14.8 12E.J
 56 13.3 125.7
                .123 .051 .032
                                  25
                                     92 100
                ·100 ·056 ·C23
                                 11
                                      100
 57 11.8 125.1
                                  5
 58 10.7 124.6
                .192 .095 .053
                                      €0 100
                                   3
 59
     9.8 122.7
 60
     9.4 121.1
                                   3
     9.4 119.5
                .169 .162 .008
                                   2
                                       0 100
61
                .092 .068 .024
                                  2
                                      100
     9.8 117.9
                                  3
 63 10.7 116.6
                .108 .388 .016
                                      67 100
                .200 .093 .646
                                 13
                                      62 100
 64 11.8 115.5
                .099 .159 .039
65 13.3 114.9
                                  4
                                      166
                .126 .076 .033
                                      £4 100
66 14.8 114.6
                                 14
                .261 .397 .059
67 16.3 114.9
                                 18
                                     £1 94 10J
68 17.8 115.5
               .115 .076 .u28
                                 11
                                      73 100
               .215 .398 .059
69 18.9 116.6
                                 31
                                      58 97 10C
70 19.8 117.9 .194 .119 .047
                                 26 46 100
71 20.2 119.5 .338 .169 .085
                                 3 ×
                                     29 71 95 100
```

DISTRIBUTION

COMMANDER
U.S. NAVAL FORCES
BOX 30/N3
FPO SAN FRANCISCO 96651

COMMANDER IN CHIEF U.S. PACIFIC FLEET PEARL HARBOR, HI 96860

COMSEVENTHELT FLEET METEOROLOGIST, N3OW FPO SAN FRANCISCO 96601

COMMANDER
AMPHIBIOUS GROUP 1
ATTN: METEORO. OFFICER
FPO SAN FRANCISCO 96601

COMMANDING OFFICER
USS CONSTELLATION (CV-64)
ATTN: MET. OFFICER, OA DIV.
FPO SAN FRANCISCO 96635

COMMANDING OFFICER
USS CORAL SEA (CV-43)
ATTN: MET. OFFICER, OA DIV.
FPO SAN FRANCISCO 96632

COMMANDING OFFICER
USS ENTERPRISE (CVN-65)
ATTN: MET. OFFICER, OA DIV.
FPO SAN FRANCISCO 96636

COMMANDING OFFICER
USS KITTY HAWK (CV-63)
ATTN: MET. OFFICER, OA DIV.
FPO SAN FRANCISCO 96634

COMMANDING OFFICER
USS MIDWAY (CV-41)
ATTN: MET. OFFICER, OA DIV.
FPO SAN FRANCISCO 96631

COMMANDING OFFICER
USS RANGER (CV-61)
ATTN: MET. OFFICER, OA DIV.
FPO SAN FRANCISCO 96633

CHIEF, ENV. SVCS. DIV. OJCS (J-33) RM. 2877K, THE PENTAGON WASHINGTON, DC 20301

NAVAL DEPUTY TO THE ADMINISTRATOR, NOAA RM. 200, PAGE BLDG. #1 3300 WHITEHAVEN ST. NW WASHINGTON, DC 20235

OFFICER IN CHARGE NAVOCEANCOMDET MONTEREY, CA 93940

COMMANDING OFFICER NORDA, CODE 101 NSTL STATION BAY ST. LOUIS, MS 39529 COMMANDING OFFICER
USS BLUE RIDGE (LCC-19)
ATTN: MET. OFFICER
FPO SAN FRANCISCO 96628

COMMANDING OFFICER
USS NEW ORLEANS (LPH-11)
ATTN: MET. OFFICER
FPO SAN FRANCISCO 96627

COMMANDING OFFICER
USS OKINAWA (LPH-3)
ATTN: MET. OFFICER
FPO SAN FRANCISCO 96625

COMMANDING OFFICER
USS TRIPOLI (LPH-10)
ATTN: MET. OFFICER
FPO SAN FRANCISCO 96626

COMMANDING OFFICER
USS TARAWA (LHA-1)
ATTN: MET. OFFICER
FPO SAN FRANCISCO 96622

COMMANDING OFFICER
USS BELLEAU WOOD (LHA-3)
ATTN: MET. OFFICER
FPO SAN FRANCISCO 96623

COMMANDING OFFICER
USS PELELIU (LHA-5)
ATTN: MET. OFFICER
FPO SAN FRANCISCO 96624

COMMANDING OFFICER
USS POINT LOMA (AGDS-2)
ATTN: MET. OFFICER
FPO SAN FRANCISCO 96677

CINCPAC BOX 13 STAFF CINCPAC J37 CAMP SMITH, HI 96861

CHIEF OF NAVAL OPERATIONS (OP-952)
U.S. NAVAL OBSERVATORY WASHINGTON, DC 20390

COMMANDER (2)
NAVAIRSYSCOM
ATTN: LIBRARY, AIR-00D4
WASHINGTON, DC 20361

COMMANDER
NAVAIRSYSCOM, AIR-33
WASHINGTON, DC 20361

COMMANDER
NAVAIRSYSCOM
MET. SYS. DIV., AIR-553
WASHINGTON, DC 20360

NAVAL POSTGRADUATE SCHOOL METEOROLOGY DEPT., CODE 63 MONTEREY, CA 93940

COMMANDER AWS/DN SCOTT AFB, IL 62225 COMNAVOCEANCOM NSTL STATION BAY ST. LOUIS, MS 39529

COMNAVOCEANCOM ATTN: J. OWNBEY, N542 NSTL STATION BAY ST. LOUIS, MS 39529

COMMANDING OFFICER
NAVWESTOCEANCEN
BOX 113
PEARL HARBOR, HI 96860

COMMANDING OFFICER
NAVEASTOCEANCEN
MCADIE BLDG. (U-117)
NAVAL AIR STATION
NORFOLK, VA 23511

COMMANDING OFFICER
U.S. NAVOCEANCOMCEN
BOX 12, COMNAVMARIANAS
FPO SAN FRANCISCO 96630

COMMANDING OFFICER
U.S. NAVOCEANCOMFAC
FPO SEATTLE 98762

COMMANDING OFFICER (10)
U.S. NAVOCEANCOMFAC
BOX 63, NAS (CUBI PT.)
FPG SAN FRANCISCO 96654

DIRECTOR (12)
DEFENSE TECH. INFORMATION
CENTER, CAMERON STATION
ALEXANDRIA, VA 22314

THE EXECUTIVE DIRECTOR
AMERICAN METEORO. SOCIETY
45 BEACON ST.
BOSTON, MA 02108

AMERICAN METEORO. SOCIETY METEORO. & GEOASTRO. ABSTRACTS
P.O. BOX 1736
WASHINGTON, DC 20013

DIRECTOR, JTWC BOX 17 FPO SAN FRANCISCO 96630

WORLD METEOROLOGICAL
ORGANIZATION, ATS DIV.
ATTN: N. SUZUKI
CH-1211, GENEVA 20
SWITZERLAND

DIRECTOR, ROYAL OBSERVATORY NATHAN ROAD, KOWLOON HONG KONG, B.C.C.

USAFETAC/TS SCOTT AFB, IL 62225

3350TH TECH. TRNG GROUP TTGU/2/STOP 623 CHANUTE AFB, IL 61868

AFGL/LY HANSCOM AFB, MA 01731

SWW/DN LANGLEY AFB, VA 23665

OFFICER IN CHARGE SERVICE SCHOOL COMMAND DET. CHANUTE/STOP 62 CHANUTE AFB, IL 61868

HQ 1ST WEATHER WING/DN HICKAM AFB, HI 96853

DET 17, 30 WS APO SAN FRANCISCO 96328

CHIEF AEROSPACE SCIENCE BRANCH HQ 1ST WW (MAC) HICKAM AFB, HI 96853

DEPT. OF METEOROLOGY COLLEGE OF ARTS & SCIENCES UNIV. OF THE PHILIPPINES DILMAN, QUEZON CITY 3004 PHILIPPINES

TECHNICAL LIBRARY
WEATHER BUREAU
NATIONAL DEFENSE DEPT.
LUNGSOD NG QUEZON
QUEZON, PHILIPPINES

NATIONAL WEATHER SERVICE
PHILIPPINE ATMOS. GEOPHYS. &
ASTRO. SERV. ADMIN (PAGASA)
1424 QUEZON AVE.
QUEZON CITY;, PHILIPPINES

DIRECTOR, TYPHOON MODERATION RSCH & DEVEL. OFFICE, PAGASA MINISTRY OF NATIONAL DEFENSE 1424 QUEZON AVE. QUEZON CITY, PHILIPPINES

COORDINATOR, ESCAP/WMO
TYPHOON COMMITTEE SECRETARIAT
C/O UNDP
MANILA, PHILIPPINES